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ABSTRACT
Wound healing is a sophisticated response ubiquitous to various traumatic stimuli leading to an anatomical/
functional disruption. The aim of present article was to review the current evidence regarding the effects of
microgravity on wound healing dynamics. Modulation of haemostatic phase because of alteration of platelet
quantity and function seems probable. Furthermore, production of growth factors that are released from activated
platelets and infiltration/function of inflammatory cells seem to be impaired by microgravity. Proliferation of
damaged structures is dependent on orchestrated function of various growth factors, for example transforming
growth factors, platelet-derived growth factor and epidermal growth factor, all of which are affected by
microgravitational status. Moreover, gravity-induced alterations of gap junction, neural inputs, and cell
populations have been reported. It may be concluded that different cellular and extracellular element involved in
the healing response are modified through effect of microgravity which may lead to impairment in healing
dynamics.
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INTRODUCTION
Wounds involve the gross macroscopic or sub-

liminalmicroscopic damage to the anatomical and

functional integrity of live tissues.(1,2) The diverse

clinical manifestations of injury range from con-

spicuous cutaneous injuries (3) to scenarios

involving subtle metabolic microangiopathies (4).

Regardless of the specific aetiology and external

manifestation, the similar array of events that

follows the injury is directed at restoration of the

original status of wounded tissue. The repair

process progresses through several overlapping

phases, which include inflammation, proliferation

and remodelling (2,3). Alteration of any of the

interrelatedelements involved inhealingcanaffect

the entire process and the final outcome (5–8).

The modern era has witnessed a substantial

rise in quantity and quality of manned space

flights and has provided promise for the even-

tual long-term inhabitation of space, either on

stations or other planets. Within space, the dy-

namic equilibrium of human body is altered by

exposure to a variety of altered circumstances

(9,10). These include changes in gravitational

status, neuroimmunoendocrine modulations,

modified environmental stimuli (such as radia-

tion), etc. (10). Considering the probability that

traumatic injuries will occur during space travel

and the importance of efficient repair to the

astronaut, it will be crucial to understand the

impact ofmicrogravity on various elements and

phases of wound healing. In the present article,

we review the current information about the

modulation of healing by gravity.

Haemostasis
Immediately after wounding, two interrelated

pathways are activated in order to stop bleed-

ing. A fibrin clot forms, filling the anatomical

void, while platelets contact the exposed
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collagenandundergoaggregationandactivation.

The resulting fibrin/platelet plug contributes to

the initial stability of wound and also serves as

a provisional matrix that will be replaced as

healing proceeds (11,12). Beyond their haemo-

static function, platelets release several growth

factors such as transforming growth factor-beta

(TGF-b), platelet-derived growth factor (PDGF),

insulin-like growth factors and epidermal growth

factor (EGF), all of which may play a role in the

initiation of healing response (13,14).

Studies that examine the effects of micrograv-

ity on haemostatic pathways are contradictory,

as reports of both increased thrombotic disease

(15) and increased haemorrhagic status (16) can

be found in the extant literature. Thrombocyto-

penia, an increase in activated partial thrombo-

plastin time and defective cell–cell adhesion

have been described to occur in the micro-

gravitational condition, increasing the haemor-

rhagic risk. The sustained elevation of blood

pressure that has been shown to result because

of microgravity exposure may also increase the

threat of haemorrhage (17–21). In contrast, in

circumstances of altered gravity, thrombotic

incidents may increase because of alterations

in blood volume, blood viscosity, elevation of

superoxide anions, increases in catecholamine

release and metabolic disorders (22–25). Coag-

ulative imbalances have also been reported (26).

Fibrin structure, including the thickness of the

fibres, the number of branch points, porosity

and permeability, have also been suggested to

be important determinants of healing outcomes

(12). It has been reported that microgravity-

formed fibrin gels are more uniform than those

formed at normal gravity, although the fibre

diameter and matrix porosity are not affected

(27) In contrast, later studies showed dimin-

ished matrix porosity in microgravitational

status (28). The relative inconsistency of data

may partially reflect the difference in experi-

mental methods and environments. One possi-

bility is that the diminished platelet content of

the platelet/fibrin plug owing to microgravity

may reduce contractile force and promote the

fibrinolysis rate of fibrin clot (29–31). An earlier

loss of superficial eschar because of hastened

fibrinolysis would be expected to lead to

increased wound contraction (32). Independent

ofwhetherhaemostasis is altered, bleeding from

thewound site under situations ofmicrogravity

would permit the formation of large fluid dome

because of high surface tension of blood (33).

While control of this bleeding pattern may not

be difficult (33), special training for providing

medical care towoundsmay be needed because

of altered fine motor skill (34).

Inflammation
Degranulation of activated platelets is an early

event in wound healing. Platelets release amulti-

tude of potential mediators at the wound site,

including TGF-b, PDGF and EGF, and many of

these mediators may modulate the subsequent

healingprocess. PDGFcan initiate the chemotaxis

of neutrophils, smooth muscle cells and fibro-

blasts. This growth factor is mitogenic for

fibroblasts and arterial smooth muscle cells, can

facilitate the release of other growth factors and is

also reported to enhance the effects of some

growth factors likeTGF-b (35–37). Similarly, TGF-

b isoforms (TGF-b1, TGF-b2 and TGF-b3) can

attract neutrophils to sites of injury (38). Themost

important role of TGF-b is probably the regula-

tion of the deposition of extracellular matrix

components, which occurs through its influence

on the proliferation of fibroblasts and their

synthetic activity (39). Moreover, TGF-b and

PDGF enhance the effect of each other through

synergistic interactions (36,37,40). A similar syn-

ergistic interaction has been reported for EGFand

PDGF (41). While platelets certainly provide an

initial pool of EGF, TGF-b and PDGF, other cell

types within the wound continue to produce

these mediators as healing progresses (42–50).

Space flight probably has the potential to

greatly alter the production of EGF, PDGF and

TGF-b inwounds. Themicrogravitational status

has been shown to influence the expression the

EGF receptor, and EGF-induced signal trans-

duction is impaired inmicrogravity (51–53). The

production of TGF-b has been found to be

downregulated in simulatedmicrogravitational

status, and microgravity induces the down-

regulation of the PDGF receptor by 62% (54).

Furthermore, the response of wounds to PDGF

during space flight was attenuated compared

with control wounds on the ground (55). To-

gether, these data suggest that the production of

growth factors that are released from activated

platelets seems to be impaired by microgravity.

The inflammatory phase involves the

regional activation of immune system and the

infiltration of wound site by inflammatory cells.

Many of the infiltrating immune cells secrete

growth factors that stimulate theproliferationof

cellular components of the tissues. Neutrophils
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are the first of the circulating inflammatory cells

to arrive at the site of injury (56,57). Thereafter,

monocytes gradually arrive, eventually becom-

ing the dominant inflammatory cell population

in wounded region. It has been suggested that

the abundance of monocytes, precursors of

macrophages, appears to be a rate-limiting

parameter in tissue repair (58). In this context,

space-induced deficiencies in monocytes may

be critical. Indeed, Taylor et al. (59) reported a

decrease in peripheral blood monocytes after

space flight. Likewise, Ichiki et al. (60) reported

microgravity-induced neutrophilia. This finding

may partially reflect the effect of flight-induced

psychological stress on immune function (61). In

contrast,Meehan et al. (62) reported a post-flight

increase in circulatingmonocytes andno signifi-

cant changes in plasma cortisol levels. Allebban

et al. (63) reported a significant reduction in the

absolute number of lymphocytes and mono-

cytes and a slight increase in the absolute

number of eosinophils and neutrophils after

space flight. Thus a microgravity-induced

reduction in monocytes seems a consistent

finding, while changes in the number of

neutrophils are less consistently reported.

Beyond cell number, functional attributes of

leucocytes that are critical to cell migration also

appear to be altered by space flight. While the

studies in this area are somewhat conflicting,

overall they provide strong evidence that

microgravity does indeed influence leucocyte

function. Most of the data support the concept

that neutrophil adhesiveness is increased by

microgravity. The levels of adhesion molecules

on neutrophils are increased during space flight

(64), and a 10-fold increase in chemotactic

response of neutrophils exposed to micrograv-

ity has been shown. The findings of Boxer et al.

(65), who showed impaired locomotion of

monocytes in modelled microgravity, suggest

that the effect is cell specific. Mechanistically,

flight stress, and the resulting catecholamine

release, may be important to these observed

changes in leucocyte function. However, direct

exposure of neutrophils to epinephrine had no

direct effect on neutrophil adhesion (66); al-

though exposure of endothelial cells to epineph-

rine decreased neutrophil adherence by 40%,

the oxidative functions and microgravity are

less well investigated. However, an antiortho-

static suspension (modelled space flight) did not

alter the oxidative burst in neutrophils (67).

Another immune cell that might be influ-

enced by space flight is the mast cell. Mast cells

release vasoactive amines, which enhance the

permeability of regional blood vessels, pro-

moting the passage of solutes and inflammatory

cells to wound site. Several studies suggest that

mast cells influence inflammation and repair at

sites of injury and a link between increasedmast

cell content and the formation of hypertrophic

scars has been suggested (68). To date, the effect

of gravity on mast cell function has not been

evaluated.However, stress seems likely to affect

mast cell function, as steroid-therapy reduces

the number of these cells in hypertrophic scars

(69). Psychological stress in rats resulted in dura

mast cell activation and rat mast cell protease I

secretion that were corticotropin-releasing hor-

mone (CRH) dependent (70). Also, it has been

proposed that CRH activates skin mast cells

leading to vasodilation and increased vascular

permeability (71). Although speculative, flight-

inducedpsychological stressmight be predicted

to cause a sustained hyperactivation of these

cells in the wound milieu, with resultant

increased hypertrophic scarring. Nonetheless,

comprehensive research aiming at the elucida-

tion of the function and number of these cells in

microgravity-exposed wounds seems necessary.

Another immune cell type that appears to be

functionally impaired by exposure to micro-

gravity is Tcells (72–75). The expression of both

IL-2 and IL-2Ralpha genes is significantly

inhibited in simulated microgravity (73).

Table 1 The effect of microgravity on various elements

involved in wound healing

Target Increase Decrease Unaffected

Platelets þ (16)

Superoxide anions þ (22–25)

Fibrin porosity þ (28) þ (27)

Fibrinolysis þ (29–31)

EGF function þ (51–53)

TGF-b þ (54,85,86) þ (87)

PDGF function þ (54,55)

Monocytes þ (59)

Neutrophils þ (60,61) þ (62)

T cell þ (72–75)

IL-2 þ (72,74,80)

IL-1b þ (79)

IL-6 þ (80–81)

TGF-a þ (100–103)

Gap junctions þ (113) þ (114)

Stem cell activity þ (129) þ (127–129)

EGF, epidermal growth factor; TGF, transforming growth factor;
IL, interleukin.
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Moreover, purified human T lymphocytes are

shown to exhibit differential inhibition of tran-

scription factor activation in modelled micro-

gravity. Activation of Activator Protein 1 (AP-1)

is blocked with clinorotation, whereas dephos-

phorylation of nuclear factor of activated Tcells

occurs (75). While the exact role of T cells in

regeneration of damaged tissues is not known,

space-induced functional impairments may

need to be considered in the context of wounds.

Beyond direct effects on cells themselves,

microgravitational exposure may influence the

production of the cytokines that connect the

cellular elements of wound milieu. Peana et al.

(76) assessed the effect of microgravity on

Prostaglandin E2 (PGE2)-induced oedema and

hyperalgesia. Both oedema and hyperalgesia

decreased because of anti-inflammatory and

anti-hyperalgesic action of simulated micro-

gravity. In contrast, Kumei et al. (77) detected

enhanced levels of PGE2 in flight samples

compared with ground controls in normal rat

osteoblast cultures. The secretion of interleukin

(IL)-1b, a factor that exerts panoply of effects in

wound milieu (78), is almost completely in-

hibited in microgravity (79). IL-1 is a potent

inducer of IL-6. However, despite inhibition of

IL-1, the level of IL-6 increased during space

flight (80,81). In one report, the expression of IL-

2 and IL-2 receptorwas significantly suppressed

at simulated zero gravity (72,80), although

another report failed to detect any alteration of

IL-2 level at zero gravity (73). Overall, the

available studies of the influence of gravita-

tional stress on cytokine production suggest

that microgravity may produce multiple per-

turbations in secretory patterns at sites of

inflammation, such as the healing wound.

Proliferation
In skin, the proliferative stage of healing

involves regeneration of epithelial barrier,

deposition of extracellular matrix and prolifer-

ation of connective tissue cells. Various growth

factors secreted during inflammatory stage

mediate differentiation and proliferation and

function of cellular elements. One key factor is

TGF-b, which regulates the deposition of new

extracellular matrix through transcriptional

activation of genes encoding extracellular

matrix molecules such as collagen and proteo-

glycans (82). TGF-b, can also inhibit tissue

protease production and stimulate the secretion

of the inhibitors of matrix metalloproteinases

(83,84). The majority of the available data

indicates that expression of the various isoforms

of TGF-b is reduced by exposure to micrograv-

ity (85,86), although one study found no such

effect (87). The tissue response to TGF-b is

decreased under microgravity, suggesting

impairment in signal transduction pathways

(88). Asmentioned above, the influence of space

on cytokines such as TGF-b may be simply an

indirect effect that stems from flight-induced

psychological stress. In support of this concept,

glucocorticoids are known to antagonise the

effect of TGF-b at the level of transcription (89).

Song et al. (90) found that glucocorticoids

repress TGF-b activation of the TGF-b respon-

sive sequence containing Smad3/4-binding

sites. Biomechanical properties of tissue may

also influence themodulation of TGF-b function
inmicrogravity, asmicrogravity generates a low

shear strain environment. While shear stress

enhances the expression of TGF-b, blocking this

mechanical stimulus inhibits its expression (90).

Hence, it may be expected that gravity-induced

fluid dynamics may lead to downregulation of

TGF-b. While extrapolation of these results to

regenerating tissues may not be direct, it seems

likely that microgravity and the stress of space

travel will result in an impairment of both TGF-

b production and the cellular response to this

cytokine. Given that mice deficient in TGF-b or

its signalling components exhibit significant

deficits in healing (91), space flight-induced

alterations in TGF-b or its signalling pathways

would probably have extreme effects on heal-

ing. It is known that the biological activity of

TGF-b depends mainly on the type of activated

receptor/signal transduction pathway and to

a lesser extent on the specific isoforms involved.

Therefore, we suggest the use of knockout

models inmicrogravity studiesofwoundhealing

to efficiently target the alteration inTGF-b signal-
ling cascade and associated modulation of re-

generative outcome.

The EGF family, which includes EGF, trans-

forming growth factor-a (TGF-a) and heparin-

binding EGF, also seems to be influenced by

microgravity (92,93). Several studies suggested

that EGFR is important for reepithelialisation,

especially during early stages of healing (94,95).

EGF and TGF-a appear to be critical to the

development of the normal phenotypic features

of regenerating epithelium (96,97). However,

the deficiency of these growth factors has been

reported to be compensated by other growth
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factors suchas keratinocyte growth factor (KGF)

(98,99). As mentioned previously, the expres-

sion of EGF and TGF-a is substantially down-

regulated and the signal transduction pathways

are impaired in microgravity (51–53,100–103).

Interestingly, simulated microgravity enhances

the activity of KGF (49). Therefore, any impair-

ment of EGF expression that is caused by

microgravity might be partially masked

through a parallel upregulation of KGF.

PDGF is another factor that must be consid-

ered, as PDGFappears to be essential for normal

woundhealing (104,105). PDGFhas twodistinct

roles in healing procedure: an early function to

stimulate fibroblast proliferation and a later

function to induce themyofibroblast phenotype

(106). Akiyama et al. (54) found that the

expression of PDGF in microgravity is 62%

lower than the control ground samples. Fur-

thermore, the early function of PDGF – the

stimulation of fibroblast proliferation – is sub-

stantially diminished in this condition (55).

Meanwhile, space flight-induced psychological

stressmay lead to downregulation of PDGF and

its receptor in wound milieu (107).

Gap junctional intercellular communications

have implicated to play an important role in

wound healing (108). Following trauma, rapid

immediate closure of gap junctions takes places,

uncoupling damaged cells from uninjured ones

(109). During reepithelialisation, gap junctions

are temporarily lost on the surface of keratino-

cytes located in the leading edge of centripetal

moving rim of epidermis (110). Also, fibroblasts

derived from nodules that were excised from

Dupuytren’s contracture lesions show reduced

levels of intracellular gap junctions compared

with normal dermal fibroblasts (111). In con-

trast, promotion of intracellular gap junctions

through daily injections of LiCl into polyvinyl

alcohol sponge implanted into the wound

milieu, enhanced the penetration of granulation

tissue into the interstices of the sponge, increased

the amount of connective tissue deposited in the

surrounding capsule and promoted more orga-

nised collagen fibres (112). Liu et al. (113) re-

ported that connexin 43 decreased significantly

anddistributed irregularlyafter simulatedmicro-

gravity. On the contrary, Claassen and Spooner

could not detect any alteration in channelling

activity of cardiac gap junctions following short

period microgravitational status (114).

Directional centripetal migration of keratino-

cytes into the wound bed is necessary for

optimal wound healing. Keratinocytes express

b2-adrenergic receptor. It has been shown that

b-adrenergic receptor activation delays wound

healing by preventing the organisation of the

actin cytoskeleton and localisation of phos-

phoextracellular receptor kinase to the lamelli-

podial edge and its colocalisation with vinculin

and thus leading to a considerable delay in

reepithelialisation (115,116). Moreover, it has

been suggested that b-adrenergic receptor an-

tagonists promote wound reepithelialisation

in chronic human skin wound (117). However,

b-adrenergic receptor activation enhanced fi-

broblast proliferation and contraction and

meanwhile decreased fibroblast-mediated col-

lagen gel contraction, both of which are detri-

mental to wound healing (118,119). However,

b1- and b2-adrenoceptor blockade impairs

cutaneous wound healing, delineating the com-

plicated role of sympathetic system in regula-

tion of healing response (120). Simulation of

microgravity through head-down bed rest

induced increased responsiveness of sympa-

thetic nervous system through b-adrenergic
receptor sensitisation (121). Nonetheless, while

sympathetic nervous activity was decreased

during head-down bed rest, a similar finding

was not observed duringmicrogravity and thus

head-downbedrest cannotbeapplied to simulate

changes in sympathoadrenal activity during

microgravity (122). Considering the existing con-

troversy, investigation of microgravity-induced

alteration of sympathetic activity and its effect on

healing dermal wounds seems necessary.

Stem cells from various proximal and distal

niches are involved in wound healing. It has

been suggested that human mesenchymal stem

cells (hMSCs) together with b-fibroblast growth

factor accelerate cutaneous wound healing as

the hMSCs transdifferentiate into the epithe-

lium (123). The contribution of epidermal stem

cells to repair of wounded epidermis is now evi-

dent (124,125). Moreover, adult bone-marrow-

derived mesenchymal stem cells home the sites

of tissue injury and enhance the healing dynam-

ics through differentiating into various cellular

elements (126). It has been suggested that micro-

gravity reduces proliferative as well as dif-

ferentiation capabilities of human mesenchymal

stem cells (127,128). However, newly emerging

data contradict the proposed negative impacts

of microgravity and underline its enhancement

of proliferative activity of mesenchymal stem

cells (129).
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CONCLUSION
It may be concluded that various stages of

wound healing and sophisticated interactions

between elements involved in healing response

are modified in microgravitational status. How-

ever, future studies addressing the issue through

practical approaches arenecessary tounderstand

the aforementioned alterations.
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